Comparative Performance and Porting Effort of
HIP and CUDA for an Implicit Monte Carlo Code

2020 Performance, Portability and
Productivity in HPC

Coming to you pre-recorded from
/\ fabulous Los Alamos, New Mexico

/j Alex R. Long
» Los Alamos

NATIONAL LABORATORY
EST.1943

LA-UR-20-26679

Comparative Performance-and-Porting Effort of HIP

and CUDA for an Implicit Monte Carlo Code

* First off, this talk does not address the performance of the HIP porting
effort

* Monte Carlo transport is known to consume a large number of CPU
cycles and | spend a lot of time thinking about this issue

« Our mandate is to be able to run on new machines, my experience
thus far is that porting takes more time than optimizing so plan
accordingly

Los Alamos National Laboratory 9/1/20

The CUDA port of the Jayenne IMC library performs

well without much optimization

» WWe ported our Monte Carlo transport code with CUDA

* The lion’s share of the work was isolating code to run on an
accelerator
— Monte Carlo naturally has a lot of potential code paths
— Pull difficult code paths out, isolate core work functions

— After that, removing host code from device functions (std library) took some
time

— Initial performance gains came from using shared memory, eliminating
separable compilation and using constant memory for some data

* | heard about HIP as a solution for CUDA codes on EIl Capitan and
was excited to try to qualitatively measure the effort
—Was | excited for petty reasons? The short answer, is yes, yes | was
— | made a decision for performance first, could | have my cake and eat it too?

&)

Los Alamos National Laboratory 9/1/20 K}

HIP has some attractive features for a “basic” CUDA

code

» HIP generates code for AMD devices but is also a “thin layer” over
CUDA for a “single-source” GPU solution

* No need to set experimental CUDA flags for constexpr or thrust with
lambda functions

« Some features of Jayenne that make HIP a good fit (your mileage

may vary)
— Jayenne uses explicit memory management in CUDA (cudaMalloc,
cudaFree) and not managed memory (under development in HIP)

—No logic in Jayenne assumes a warp size (could be 64 in AMD devices)
— No virtual functions inside the transport loop (not supported in HIP)

9

4

9/1/20

Los Alamos National Laboratory

Some details of the port work: the easy parts

» Loaded the ROCM module, it put hipify-perl in my path and | ran
— hipify-perl -i <file name>

» Kernel launch and adding include files was the only change | would
consider more advanced than “find_replace”
— My thrust include paths and functions remained unchanged

« As many codes do, | hide CUDA specific code behind Cmake
configure time macros

* No macros had to change, even the ones for constant texture memory
| changed “#ifdef _ NVCC__ " type checksto “© HIPCC_ "~

* No checks on _ CUDA_ARCH__ in Jayenne so no ambiguity
between device features

Los Alamos National Laboratory 9/1/20

Some details of the port work: the hard parts that are

related to how Jayenne works

* | saw a hipify-cmake script was also added to the path by ROCM

— Main difference is changing the “find_package(CUDA)” command to HIP

— Our CMake does not use the standard CMake “find_package(CUDA)” type
approach, we instead enable CUDA as a language on a per project basis

* | only have three object files to make, let’s do it by hand!
—Remove gcc flags (sanitize)
—make VERBOSE=1
— Change compiler in make line to “hipcc”
* Our random number generator, Random123, code make heavy use
of platform specific intrinsics

— Are you shocked that this isn’t very portable?

— Ignoring instrinisic optimizations, even turning on “__device " decorators caused a
problem

— No portability solution would have solved this problem for me! Q

Some details of the port work: the parts you expect

when using new tools

 All complaints mentioned here are just to point out what does not “just
work” in doing a HIP port
— hipcc doesn’t accept -fopenmp flag in link phase (fixed in latest)
— 1 ran into a bug in ROCprim with including some thrust functions (fixed in
latest)
« ROCm uses the system gcc to build glibc, this caused problems in
linking to my gcc code
— This problem is fixed by specifying a gcc toolchain when using hipcc for
compiling and linking
» Our code does not currently compile with clang10+ and ROCm 3.5 on
our system is clang11

Q9

Los Alamos National Laboratory 9/1/20 7

A comparison of porting efforts: C++ to CUDA and

CUDA to HIP

* There is still work to do, as | mentioned, | was not able to run
performance comparisons

* | successfully ran my simple GPU tests that moves a particle with the
core loop

» A table with some rough numbers for the CUDA port based on the git
commit history of Jayenne and the CDash dashboard

Port feature m

Start code reorganization 06/2017

Separate GPU functions 06/2019

T First CUDA kernel call 11/2019
po

Runs tstRW_ Transporter 03/2020

Passes all integration tests with GPU 08/2020

9
Los Alamos National Laboratory 9/1/20 - 8

Conclusions

» Of course, this comparison is not scientific in a number of ways
— Measuring “effort” is inherently difficult
—I'm not able to compare performance to CUDA yet

 That said, this port took a week of work

—How long would it take to move to KOKKOS? | know where my loops are, |
know where my memory needed on the device is, my code survives a pass
with the NVCC compiler, maybe someone could tell me?

* The most valuable part of this work is knowing where the code is with
respect to a HIP port

— | can start having conversations about our CMake and how we expect HIP
to work with it

— Someone with more experience in compiler intrinsics can look at
Random123

* [t took me about a week of work to find out “where we are” '
Los Alamos National Laboratory 9/1/20 9

